E-Clouds / TMCI : Simulations and Feedback Models, MD Preparation and Preliminary Results

C. H. Rivetta¹ Ecloud / TMCI US-LARP CERN Contributors: J. D. Fox¹, O. Turgut¹, S. Uemura¹, M. Pivi¹, I. Rivetta¹, W. Hofle², U. Wehrle², G. Romulo², R. Secondo³, J.-L. Vay³

> ¹Accelerator Research Division, SLAC ²BE-RF Group CERN ³LBNL

This work is supported by the US-LARP program and DOE contract #DE-AC02-76SF00515

Aug 09, 2011 1

イロト イポト イヨト イヨト

- 2 Macro-particle Simulation Codes
 - Realistic Feedback Channel
 - Statistical Errors

- Goals and Estimation of Bunch Vertical Displacement
- Preliminary Results

4 Conclusions

High Bandwidth Feedback Project - (CERN - US LARP)

- Motivation: Control E-cloud and TMCI effects in SPS and LHC via GHz bandwidth feedback
 - Intrabunch Instability: Requires bandwidth sufficient to sense the vertical position and apply correction fields to multiple sections of a nanosecond-scale bunch.
- US LHC Accelerator Research Program (LARP) has supported a collaboration between US labs (SLAC, LBNL) and CERN
 - Large R & D effort coordinated on: Non-linear Simulation codes (LBNL - CERN - SLAC), Dynamics models/feedback models (SLAC -Stanford STAR lab), Machine measurements - SPS MD (CERN - SLAC - LBNL) and Hardware technology development (SLAC)

Macro - Particle Simulation codes : Feedback System

Generalities

The macro-particle simulation code solves

$$\frac{d^{2}\vec{x}_{p,i}(s)}{ds^{2}} + \mathbb{K}(s)\vec{x}_{p,i}(s) = \Delta P_{e,i}(\vec{x}_{p,i}(s)) + \mathcal{K}i_{k}(\langle \vec{x}_{p,i}(t, s_{BPM}) \rangle_{k}, s_{ki})$$

$$\frac{d^{2}\vec{x}_{e,j}(s)}{ds^{2}} = \Delta P_{p,j}(\vec{x}_{e,j}(s))$$

where

$$\begin{split} \Delta P_{e,i}(\vec{x}_{p,i}(s)) &= -\frac{e}{\gamma m_p c^2} \sum_{n=0}^{n_p - 1} E_e[\vec{x}_{p,i}(s); f_e(x, y, t)] \sigma(s - ns_{el}) \\ \Delta P_{p,j}(\vec{x}_{e,j}(s)) &= -\frac{e}{m_e} E_p[\vec{x}_{e,j}(s); f_{pSL}(x, y, t)], \\ \mathcal{K}i_k(\langle \vec{x}_{p,i}(t) \rangle_k, s_{ki}) &: \text{ feedback signal based on } \langle \vec{x}_{p,i}(t, s_{BPM}) \rangle_k \end{split}$$

We have a stochastic system represented by a limited number of macro-particles - Statistical errors - Limitations due to feedback hardware.

C. H. Rivetta

Macro - Particle Simulation Codes : Realistic Feedback

Add realistic representing feedback system

•
$$V_{b_k} = Ki_k (\langle \vec{x}_{p,i}(t) \rangle_k, s_{ki}), \ y_k = \langle \vec{x}_{p,i}(t, s_{BPM}) \rangle_k$$

• Receiver, processing channel, amplifier, kicker include frequency response, signal limits and noise.

•
$$[V_{b_1}...V_{b_{64}}]^T = M_{PWR} [V_{c_1}...V_{c_{16}}]^T$$

• Validate with measurements : Macro-particle simulation codes are our test-bench for control algorithm - Test stability and performance of the feedback system.

(日) (周) (日) (日)

Macro-Particle Simulation Codes : Realistic Feedback

Results from C-MAD

Kick at turn 20, free vertical oscillation of the bunch. (out of scale) $\$

C. H. Rivetta

Eclouds meeting

Macro - Particle Simulation Code : Statistical Errors

C. H. Rivetta

Eclouds meeting

Macro - Particle Simulation Code : Next steps

Error bounds for stochastic variables

- Estimate the error bounds for \hat{y}_k and \hat{V}_{b_k}
- Validate feedback models with measurements
- Benchmark C-MAD, WARP, Head-tail for different operations in SPS.
- Include realistic feedback channel in Head-tail code
- Estimate kicker strength for different operation conditions.

C. H. Rivetta

Goal: Drive individual sections of the bunch - Estimate Models

- Hardware development -Excitation - Power Stage -Vertical displacement measurement.
- Analyze and estimate using macro-particle simulation codes the signal levels and outcomes of MD measurements.
- Estimate bunch reduced dynamical model in open loop-Below e-cloud instability threshold.

- Drive individually different areas of the bunch (Excitation Amplifier Kicker)
- Measure with scope the receiver signals $\Delta \Sigma$. Estimate vertical displacement for different sections of the bunch.
- Based on Input-Output signals, estimate bunch reduced model.

(日) (同) (三) (三)

Eclouds meeting

Aug 09, 2011

9

Goal: Drive individual sections of the bunch - Estimate Models

- Hardware development -Excitation - Power Stage -Vertical displacement measurement.
- Analyze and estimate using macro-particle simulation codes the signal levels and outcomes of MD measurements.
- Estimate bunch reduced dynamical model in open loop-Below e-cloud instability threshold.

- Drive individually different areas of the bunch (Excitation - Amplifier - Kicker)
- Measure with scope the receiver signals $\Delta \Sigma$. Estimate vertical displacement for different sections of the bunch.
- Based on Input-Output signals, estimate bunch reduced model.

(日) (同) (三) (三)

Eclouds meeting

Aug 09, 2011

9

Goal: Drive individual sections of the bunch - Estimate Models

- Hardware development -Excitation - Power Stage -Vertical displacement measurement.
- Analyze and estimate using macro-particle simulation codes the signal levels and outcomes of MD measurements.
- Estimate bunch reduced dynamical model in open loop-Below e-cloud instability threshold.

- Drive individually different areas of the bunch (Excitation - Amplifier - Kicker)
- Measure with scope the receiver signals $\Delta \Sigma$. Estimate vertical displacement for different sections of the bunch.
- Based on Input-Output signals, estimate bunch reduced model.

(日) (同) (三) (三)

Eclouds meeting

Simulation Results - Estimation of Vertical Displacement.

- SPS Kicker: Max. $V_{\Delta} = 200 V$, Max. Momentum = 4.10⁻⁶ eV.s/m, Kick in single turn $\rightarrow y_{max} = 3.27 \mu m$ at 26 GeV
- It is necessary to kick the beam using a periodic excitation near the betatron frequency (frac. tune = 0.185)

Kicker signal for all the slices: $V_b = 4.10^{-6} sin(2\pi 0.185 Turns)$ eV.s/m. C-MAD result: Vertical displacement of center of the bunch.

~		
С.	н.	Rivetta

MD preparation and preliminary results

Simulation Results - Excitation signal: Sweep around betatron frequency

- C-MAD simulation includes the frequency response of the kicker.
- The frequency of the excitation signal sweeps between 0.185 $\pm\,5\%$

Aug 09, 2011 11

Momentum applied to the bunch

MD Hardware

Eclouds meeting

Aug 09, 2011 12

Э

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

MD Preliminary Results

Single bunch driven by sine wave

- Bunch was driven by continuous sine waves at 200.272680MHz, 300.404676MHz and 400.537404MHz (no phase synchronization between excitation signal and SPS ring).
- Pictures: SUM (SIGMA) signal and DIFF (DELTA) signal for multiple turns

SUM/DIFF signals when bunch is driven by 200.272680 MHz sinewave

SUM/DIFF signals when bunch is driven by 400.537404 MHz sinewave

C. H. Rivetta

Eclouds meeting

MD Preliminary Results

Single bunch driven by sine wave

 Movies: SUM (SIGMA) and DIFF (DELTA) signals are processed by equalizing the frequency response of the pick-up and cables and subtracting the mean value along the turns. e.g. Equalized SUM/DIFF signals for turns 21000 to 21500

• Movies: (top) RMS value of the vertical dipole motion, (bottom) sliding window showing the Vertical dipole motion of 25 turns. (Driven by 200.272680MHz sinewave)

C. H. Rivetta

Eclouds meeting

Conclusions

Conclusions - Further plans

- Introduced realistic models for the feedback system in macro-particle simulation codes (C-MAD, WARP), next Head-tail.
- Quantifying statistical / estimation errors in the variables used in the macro-particle codes.
- Continue with the preparation of SPS MD and the estimation of signals to be measured.
- Drive the bunch with different modal signals to analyze the vertical motion of the bunch in response to those signals
- First steps toward more specific MDs based on driving the bunch: Identification of bunch dynamics, bunch dynamic behavior near e-cloud instability and TMCI thresholds, effects of synchrotron motion of bunch centroid, etc..

・ロト ・ 日 ・ ・ 日 ・ ・

.Many thanks to all the people from CCC, OP crew and collaborators that helped conducting the Aug 03 MD, Metral, Yannis, Kevin, Thomas, \dots and many more!.

.Thanks to the audience for your attention!,Questions?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Extra slides

Excitation Box

Injection trigger (magenta), Rev-Markers (yellow), Excitation signal (light blue) (fifth bucket)

C. H. Rivetta

Eclouds meeting

Extra slides

Excitation Box

Injection trigger- (magenta), Rev-Markers (yellow), Excitation signal (light blue), 200MHz reference signal (SPS ring - green)

C. H. Rivetta

Eclouds meeting