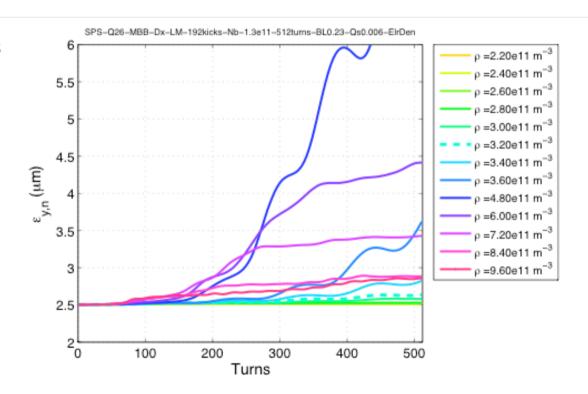
Brief update on SPS HeadTail simulations

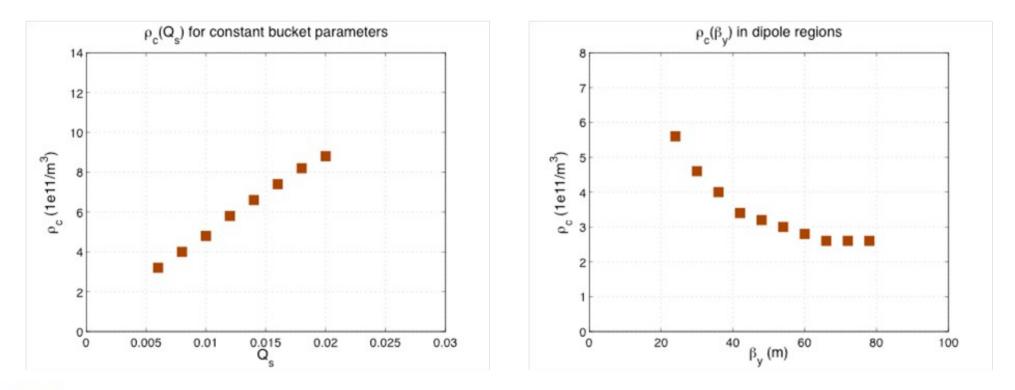
H.Bartosik, E.Benedetto, K.Li, Y.Papaphilipou, G.Rumolo

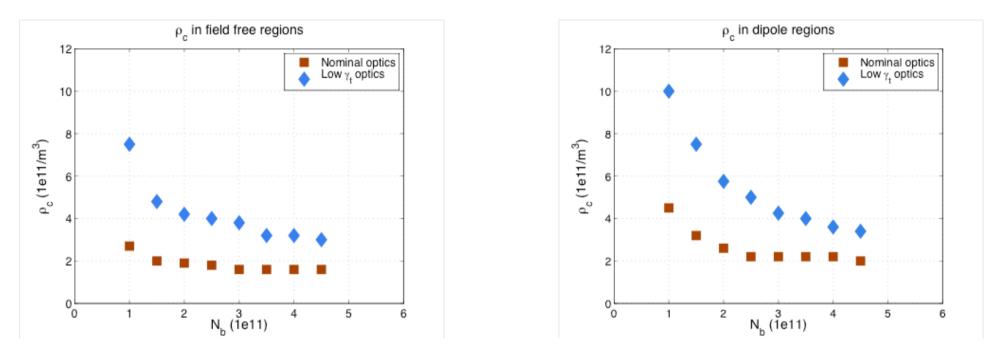
Framework


- Comparing the impact of machine optics on beam stability in the presence of electron clouds
- Simulations performed with HeadTail-ElectronCloud flavour

Parameter	Low γ_t optics	Nominal SPS optics
Bunch length (rms)	0.23 m	0.23 m
Momentum spread	0.002	0.002
RF-voltage	5.75 MV	2 MV
Synchrotron tune at inj.	0.017	0.0059
Momentum compaction	0.00308	0.00192
Transition energy (γ_t)	18	22.8
Tunes (horizontal/vertical)	20.13/20.16	26.13/26.16

Instability threshold


- We can distinguish 2 regimes:
 - Coherent regime \rightarrow < 5e11 m⁻³
 - Incoherent regime \rightarrow > 6e11 m⁻³
- The threshold for coherent instability is not always uniquely defined
- It should be defined consistently however:
 - We are in the coherent regime
 - ${\small \bullet}$ We have an emittance increase by 4 %
- The incoherent regime is sensitive to numerical parameters such as:
 - Number of kick sections, number of grid point, ...
 - It seem to ameliorate the emittance degradation for higher cloud densities


Scaling laws

- Scaling law for Head-Tail instabilities [K. Ohmi, F. Zimmermann]: $\rho_{thr} = \frac{2 \gamma Q_s}{\pi r_e L \beta_y} \sim \frac{Q_s}{\beta_y}$
- No investigation on the coefficient

Comparison of two optics

- Comparison of optics
 - Cloud density threshold values for different bunch intensities for the two optics parameter sets
- Straight sections and bending magnets
 - $_{\odot}$ Threshold increase for low $\gamma_{_{\rm T}}\text{-}optics$ for both regions
 - Straight section \rightarrow threshold increase ~ 2.3 on average
 - Bending magnet \rightarrow threshold increase ~ 2.0 on average

