Comparing e-cloud instabilities in the SPS at nominal and and at low γ_t -optics - first observations

Kevin Li, Hannes Bartosik

June 16, 2011

Motivation

Motivations for low γ_t

- Low $\gamma_t \to \text{high } \eta$
- Instability threshold for headtail-like instabilities scales $\sim \sqrt{|\eta|^a}$
- Extrapolation to two-stream instabilities not straightforward
 → launch of a HEADTAIL simulation study

 a e.g. strong headtail instability: $I_{
m th}=rac{16\gamma RQ_eta Q_s}{r_p W_0}$

Parameters

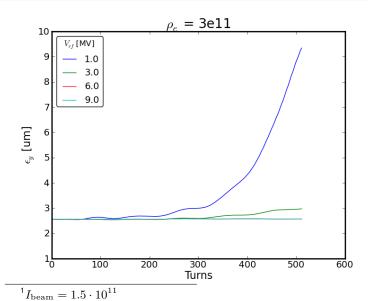
SPS optics parameters

	units	Nominal optics	Low γ_t -optics
$\gamma_{ m beam}$		27.7	27.7
$\gamma_{ m transition}$		22.8	18.0
η		-0.00062	-0.00178
$arepsilon_x^n$	[µm]	2.5	2.5
$arepsilon_y^n$	[µm]	2.5	2.5
eta_x	[m]	42	54.6
β_y	[m]	42	54.6
Q_x		26.13	20.13
Q_y		26.18	20.18

Strategy

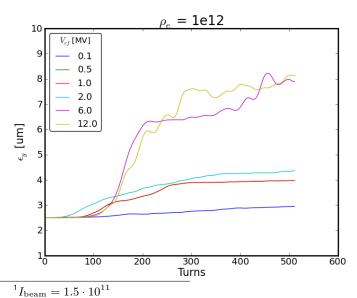
Simulation strategies

- Electron cloud interaction confined to straight sections
- Kicks per turn set to 48 for both cases to satisfy numerical convergence and to avoid low order resonances^a
- Electron cloud density set to values from $\rho=3\cdot 10^{11}~{\rm m}^{-3}$ to $\rho=1\cdot 10^{12}~{\rm m}^{-3}$
- We scan the beam intensity for different settings of $V_{\rm RF}$; scan ranges:


$$\begin{array}{ccc} \text{Intensity [1e11]} & \text{0.4-2.0} \\ V_{\text{RF}} \, [\text{MV}] & \text{0.1-12.0} \\ Q_s & \text{0.00132-0.014}^b \end{array}$$

^awe expect similar electron cloud formation along the machine for both cases

$$^bQ_s=\sqrt{rac{qV_{ ext{RF}|\eta|h}}{2\pi E_{ ext{beam}}eta_0^2}}$$
 , $\sigma_z=0.2$ m



Observations

Observations

1

Conslusions

Preliminary conclusions

- ullet We find 2 regimes with different effects of Q_s
- \bullet Below threshold, high Q_s seems to help; the threshold scales as expected
- ullet Above threshold, high Q_s seems to enhance the emittance deterioration

End

Thank you!

discussion...

Contact:

kevin.shing.bruce.li@cern.ch

